

Using Real-Time Geochemical Monitoring and Flood Inundation Mapping to Identify Groundwater Under the Influence of Surface Water

Christopher Braun – U.S. Geological Survey
Gregg Tatum – Texas Commission on
Environmental Quality

Outline

- Background on groundwater sources under the influence of surface water (GUIs)
- Historical methodology for GUI determination
- Relevance and Benefits
- Current methodology for GUI determination
 - Well selection
 - Microscopic particulate analysis (MPA)
 - Continuous monitoring of geochemical parameters
 - Flood inundation mapping
- Conclusions

Background

- Groundwater sources under the influence of surface water (GUIs) are particularly vulnerable to contamination.
- Surface water influence may be brief and relatively infrequent; duration / timing of surface-water influence is a critical component of evaluating GUIs
- Indicators of surface water influence on groundwater include:
 - Geochemical responses in specific conductance, pH, temperature, turbidity, or dissolved oxygen
 - Microscopic particulates characteristic of surface water
 - Results of flood inundation mapping

Background

- Influence of surface water on ground water is most likely to occur in aquifers with zones of extremely high permeability, such as:
 - Alluvial material
 - Fractured rock
 - Karst
- Random sampling for surface water indicators is unlikely to result in identification of wells affected by surface-water influxes.

Historical GUI Program

(Texas Commission on Environmental Quality prior to USGS involvement)

- Microscopic Particulate Analysis (MPA) sampling / analytical methodologies did not satisfy Environmental Protection Agency (EPA) requirements
- Timing of MPA sampling not event-driven
- GUI determination protocols not implemented consistently

Relevance and Benefits

- The Texas Commission on Environmental Quality requires additional treatment measures for GUIs.
- ➤ Continuously monitored basic geochemical properties, MPA, and flood inundation mapping can be used to provide a more defensible body of evidence that a well is under the influence of surface water.

Methodology for GUI Determination (2005 – 2011)

Site selection

- Prioritization based on scoring system
- Population served
- Input from field agents
- Recent or prolonged history of contamination

Methodology for GUI Determination (2005 – 2011)

Microscopic particulate analysis (MPA)

Continuous monitoring of geochemical parameters

Flood inundation mapping

MPA Risk Rating (EPA Consensus Method)

Risk rating tables were developed by EPA in the early 1990s as a tool to aid with interpretation of MPA data.

- Risk ratings are based on number of surface water bioindicators present per 100 gallons of water.
- Different risk
 weightings are
 assigned to various
 bioindicators

MPA Risk Rating cont. (EPA Consensus Method)

- The following bioindicators contribute to the risk rating:
 - Giardia
 - Coccidia
 - Diatoms
 - Other algae
 - Insects / larvae
 - Rotifers
 - Plant debris
- The sum of the scores for all bioindicators is then used to determine the relative risk (high, medium, or low) of surface water contamination in a given sample

Continuous Monitoring of Geochemical Parameters

- Small volume of raw water diverted to a flow-through cell attached to a sonde
- Geochemical data collected at 15-minute intervals includes:
 - specific conductance
 - pH
 - temperature
 - turbidity
- Data transmitted real-time and posted on the web

Continuous Monitoring of Geochemical Parameters cont.

Continuous Monitoring of Geochemical Parameters cont.

Continuous Monitoring of Geochemical Parameters cont.

Flood Inundation Mapping

- Indicator of wellhead compromise
- Derived from modeling real-time USGS streamflow data relative to a 10-meter digital elevation model

Modeled using HAZUS-MH MR5 – Federal Emergency Management Agency (FEMA) risk assessment tool

Flood Inundation Mapping cont.

Conclusions

- Determining if a well is a GUI is difficult because surface water influence is typically very brief and / or infrequent.
- Using a 'toolbox' approach to GUI determination increases the likelihood of capturing the evidence needed to make this sort of determination.
- Our use of this toolbox approach, which included continuously monitored basic geochemical properties, MPA, and flood inundation mapping provided a more technically defensible GUI classification.

